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Abstract
We consider the semiclassical theory in a joint phase space of spin and orbital
degrees of freedom. The method is developed from the path integral using the
spin-coherent-state representation, and yields the trace formula for the density
of states. We discuss the limits of weak and strong spin–orbit coupling and
relate the present theory to the earlier approaches.

PACS numbers: 03.65.Sq, 71.70.Ej, 73.21.La

1. Introduction

The subject of spin–orbit interaction in solid state physics has been attracting much attention
recently due to potential applications in spin-based electronic devices [26, 12]. It has often
proved advantageous, on the other hand, to exploit the semiclassical description of electrons
in mesoscopic systems in the ballistic regime [28]. Hence, there is a substantial interest in
extending the semiclassical theory to include spin. Several attempts were made in the last
decade in this direction. Littlejohn and Flynn [25] revised and improved the asymptotic
theory of coupled wave equations and applied it to systems with standard spin–orbit coupling.
Their approach, however, relies on a finite strength of the spin–orbit interaction, and thereby
becomes invalid at the points in classical phase space where the interaction vanishes—the so-
called mode-conversion points. Frisk and Guhr [13] found that in certain cases this problem
can be corrected by a heuristic procedure. Bolte and Keppeler [5] studied the opposite situation
when the interaction is weak. They derived the trace formula for the Dirac equation and Pauli
equation with spin 1/2. Based on the assumption that the orbital motion is not affected by
spin, their approach was used to explain the anomalous magneto-oscillations in quasi-two-
dimensional systems [20]. A comparative analysis of the above-mentioned semiclassical
methods and their applications to specific systems can be found in [2].

In a new semiclassical approach to spin–orbit coupling [27] the orbital and spin degrees
of freedom are combined in a joint (extended) phase space. Then the whole arsenal of the
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semiclassical methods developed for spinless systems can be applied there. The description
of spin by continuous variables is achieved by using the basis of coherent states. After a path
integral containing the spin and orbital coordinates is constructed, it can be evaluated in the
stationary-phase approximation, yielding the semiclassical propagator or its trace.

A detailed investigation of the method of [27], with the focus on the trace formula for the
density of states, is the subject of the present paper. We will argue that the earlier approaches
can be put under one roof by this new theory. (A step in this direction was made in [36].) Our
discussion will be limited to Hamiltonians linear in spin. For such systems, as we will show,
the semiclassical treatment is valid not only in the large-spin limit, but also for a finite spin,
including spin 1/2.

We expect that the semiclassical method presented below can be effectively used in
systems with relatively strong spin–orbit interaction, such as p-InAs or InGaAs-InAlAs
heterostructures [18], or atomic nuclei [4]. Another field of application is molecular dynamics,
where similar methods were developed to map the discrete electronic states to continuous
variables and then to treat those semiclassically [33].

Our paper is organized as follows. In section 2 we briefly review the derivation of the
trace formula without spin, starting from the path-integral representation for the propagator.
Recently proposed by Sugita [32], this new procedure reproducing the well-known result of
Gutzwiller [15] will later be generalized to include spin. In section 3 we define the spin coherent
states and write the quantum-mechanical partition function in the path-integral representation
for a system with spin–orbit coupling. Section 4 is the main part of this work, where three
versions of the trace formula are derived. In the first two instances we integrate over the
spin variables in the path integral exactly and then apply the stationary-phase approximation.
Consequently, for weak spin–orbit interaction (section 4.1 and appendix A) we obtain the
generalization of the Bolte–Keppeler trace formula to arbitrary spin, and for strong coupling
(section 4.2) we recover, on a restricted basis, the result by Littlejohn and Flynn (at the
moment we cannot recover their ‘no-name’ phase). In the third case (section 4.3) the path
integral is evaluated by the stationary-phase method in both spin and orbital variables. Then,
using Sugita’s approach, we express the oscillating part of the density of states as a sum
over the periodic orbits in the extended phase space. Special attention is paid to the Solari–
Kochetov phase correction [22, 30, 34] arising in the semiclassical limit of spin-coherent-state
path integrals. In section 4.4 we classify the regimes of weak, strong and intermediate
coupling, and show that the trace formula in the extended phase space works in all of them.
(Appendix B illustrates explicitly the strong-coupling limit.) We also discuss and relax the
large-spin applicability condition for the semiclassical approximation. As an application of
the general theory, in section 5 we study two systems with Rashba-type spin–orbit interaction
[8] and the Jaynes–Cummings model [19].

2. Trace formula without spin

In this section we summarize some basic facts related to the semiclassical trace formula and
present its derivation for systems without spin [32]. We consider a system described by the
Schrödinger equation

Ĥψk = Ekψk (1)

with a discrete energy spectrum {Ek}. Its density of states g(E) = ∑
k δ(E − Ek) can be

subdivided into smooth and oscillating parts, i.e.

g(E) = g̃(E) + δg(E). (2)
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From the semiclassical point of view, the smooth part g̃(E) is given by the contribution of
all orbits with zero length and can be evaluated by the (extended) Thomas–Fermi theory [3].
Numerically it can be extracted by a Strutinsky averaging of the quantum spectrum [6].

In this paper we assume the smooth part to be known and will be interested in the
oscillating part δg(E), which is semiclassically approximated by the trace formula [15]

δgsc(E) =
∑
po

Apo(E) cos

(
1

h̄
Spo(E) − π

2
σpo

)
. (3)

The sum here is over all classical periodic orbits (po), including all repetitions of each primitive
periodic orbit (ppo). Spo(E) is the action integral and σpo is the Maslov index of a periodic
orbit. The amplitude Apo(E) depends on the integrability and the continuous symmetries
of the system. When all periodic orbits are isolated in phase space, the amplitude is given
by [15]

Apo(E) = 1

πh̄

Tppo√
|det(M̃po − I2(d−1))|

(4)

where Tppo is the period of the primitive orbit, M̃po is the stability matrix of the periodic orbit
and d is the number of degrees of freedom. I is the unit matrix, the subscript denotes the

dimensionality of the space where I acts. For two-dimensional systems
√

|det(M̃po − I2)| =
2|sin(�po/2)|, where �po is called the stability angle of a periodic orbit.

Recently Sugita [32] has proposed a re-derivation of Gutzwiller’s trace formula directly
from the quantum partition function, avoiding the calculation of the semiclassical propagator.
Since we utilize his approach in the following sections for systems with spin, we will briefly
review it here. Sugita’s starting point is the quantum partition function (or the trace of the
quantum propagator) in the path-integral representation

Z(T ) =
∫ D[q]D[p]

(2πh̄)d
exp{iR[q, p; T ]/h̄}. (5)

The path integral is calculated along closed paths (q(t), p(t)) in the 2d-dimensional phase
space over a time interval T:

D[q]D[p]

(2πh̄)d
≡ lim

N→∞

N∏
l=1

d∏
j=1

(
dqj (tl) dpj(tl)

2πh̄

)
tl = lT /N. (6)

In (5)

R[q, p; T ] =
∮ T

0

[
1

2
(p · q̇ − q · ṗ) − H(q, p)

]
dt (7)

is the Hamilton principal action function. H(q, p) is the classical Hamiltonian, i.e. the Wigner–
Weyl symbol of Ĥ . The action form p · dq can be antisymmetrized along the closed paths.
The Fourier–Laplace transform of Z(T ) yields, after taking the imaginary part, the density of
states

g(E) = − 1

π
Im

(
1

ih̄

∫ ∞

0
eiET/h̄Z(T ) dT

)
. (8)

The path integral (5) receives its largest contributions from the neighbourhoods of the
classical paths, along which the principal function R is stationary according to Hamilton’s
variational principle δR = 0. The first variation hereby yields the classical equations of
motion

q̇i = ∂H
∂pi

ṗi = −∂H
∂qi

. (9)
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One may evaluate the integrations in (5) using the stationary-phase approximation, which
becomes asymptotically exact in the classical limit R � h̄. The semiclassical approximation
of the partition function Z(T ) then turns into a sum over all classical periodic orbits with fixed
period T

Zsc(T ) =
∑
po

eiRpo/h̄

∫ D[η]

(2π)d
exp

{
iR(2)

po [η ; T ]
}

(10)

where Rpo are the principal functions (7), evaluated now along the classical orbits. The
functional of the second variations is

R(2)
po [η , T ] =

∮ T

0

[
1

2
η ·J η̇ − H(2)

]
dt (11)

where η is the 2d-dimensional phase-space vector of small variations η = (λ ,ρ ) =
(δq, δp)/

√
h̄ and J = ( 0 Id

−Id 0

)
is the 2d-dimensional unit symplectic matrix. H(2) is the

second variation of the classical Hamiltonian H, calculated along the periodic orbits:

H(2) = 1

2

d∑
i,j=1

[
λiλj

∂2H
∂qi∂qj

+ 2λiρj

∂2H
∂qi∂pj

+ ρiρj

∂2H
∂pi∂pj

]
. (12)

Note that Zsc(T ) does not include the contribution of the zero-length orbits.
After a stationary-phase evaluation of the Fourier–Laplace integral (8) with Zsc(T )

instead of Z(T ), one finally obtains Gutzwiller’s trace formula (3) where the actions
Spo(E) = Rpo + ETpo are calculated at fixed energy E and the periods of the orbits are
Tpo = dSpo/dE. The monodromy matrix Mpo is defined by η (Tpo) = Mpoη(0) in terms
of the solutions of the linearized equations of motion η̇ = J ∂H(2)/∂η , which are purely
classical. After removing the trivial parabolic block from Mpo that appears due to the time
translation symmetry, one obtains the reduced 2(d −1)-dimensional monodromy matrix M̃po.
The latter enters formula (4) and since it contains information about the stability of periodic
orbits [6] it is often referred to as the stability matrix. For the Maslov indices σpo Sugita has
also given general formulae [32].

3. Spin coherent states and quantum partition function

We intend to generalize the path-integral representation for the partition function (5) to include
the spin degree of freedom. The main issue then is to be able to describe spin on the quantum-
mechanical level by a continuous variable. One can achieve this by using the overcomplete
basis of spin coherent states. The path integral for a system with spin in the SU(2) spin-
coherent-state representation originally appeared in a paper by Klauder [21] as an integral on
the sphere S

2. Kuratsuji et al [23] have represented it as an integral over paths in the extended
complex plane C̄

1
.

The SU(2) coherent state |z; s〉 for spin s is defined by

|z; s〉 = (1 + |z|2)−s exp(zŝ+)|s,ms = −s〉 (13)

ŝ−|s,ms = −s〉 = 0 (14)

where z ∈ C̄
1 is a complex number. The spin operators ŝ± = ŝ1 ± iŝ2 and ŝ3 are the generators

of the spin su(2) algebra:

[ŝ3, ŝ±] = ±ŝ± [ŝ+, ŝ−] = 2ŝ3. (15)
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|s,ms〉 are the eigenstates of ŝ3. From the group-theoretical point of view, s ∈ N/2 labels
irreducible representations of SU(2).

The irreducibility, as well as the existence of the SU(2) invariant measure dµs , ensures
that the resolution of unity holds in the spin-coherent-state basis:∫

|z; s〉〈z; s| dµs(z
∗, z) = I2s+1 dµs(z

∗, z) = 2s + 1

π(1 + |z|2)2
d2z. (16)

This turns out to be the most important property of spin coherent states that allows for the
path-integral construction. The measure dµs takes account of the curvature of the sphere S

2.
In what follows, we denote |z; s〉 simply by |z〉.

Let us now consider a quantum Hamiltonian with spin–orbit interaction

Ĥ = Ĥ 0 + Ĥ s = Ĥ 0(q̂, p̂) + h̄ŝ · Ĉ(q̂, p̂) (17)

where ŝ = (ŝ1, ŝ2, ŝ3) and Ĉ = (Ĉ1, Ĉ2, Ĉ3) is a vector function of the coordinate and
momentum operators q̂, p̂. Thereby we assume the most general form of spin–orbit interaction
linear in spin. We write the expression for the respective quantum propagator in terms of a path
integral in both the orbital variables q, p and the spin-coherent-state variables z, z∗. Imposing
periodic boundary conditions on the propagation and thus integrating over closed paths, we
arrive at the expression for the partition function [cf (5)]:

Z(T ) =
∫ D[q]D[p]

(2πh̄)d
Dµs[z∗, z] exp{iR[q, p, z∗, z; T ]/h̄}. (18)

The Hamilton principal action function now includes the symplectic 1-form due to spin:

R[q, p, z∗, z; T ] =
∮ T

0

[
1

2
(p · q̇ − q · ṗ) + h̄s

zż∗ − z∗ż
i(1 + |z|2) − H(q, p, z∗, z)

]
dt (19)

and the path integration in (18) is taken over the 2(d + 1)-dimensional extended phase space:

D[q]D[p]

(2πh̄)d
Dµs [z∗, z] = lim

N→∞

N∏
l=1

d∏
j=1

dqj (tl) dpj(tl)

2πh̄
dµs(z

∗(tl), z(tl)) (20)

where the time interval T is divided into N time steps tl = lT /N .
The c-number Hamiltonian H(q, p, z∗, z) appearing in the integrand of (19) is

H(q, p, z∗, z) = H0(q, p) + Hs(q, p, z∗, z)
= H0(q, p) + h̄sn(z∗, z) · C(q, p) (21)

where H0(q, p) and C(q, p) are the Wigner–Weyl symbols of the operators Ĥ 0 and Ĉ, and
n = (n1, n2, n3) = 〈z|ŝ|z〉/s is the unit vector of dimensionless classical spin. Its components
in terms of z∗ and z are given by

n1 + in2 = 2z∗/(1 + |z|2) n3 = −(1 − |z|2)/(1 + |z|2). (22)

One may recognize the stereographic projection from a point n on the unit Bloch sphere onto
a point (Re z,−Im z) on the complex plane, whereby the south pole is mapped onto its origin
z = 0.

We remark that the choice of the c-number Hamiltonian is not unique and, in the
discretized path integral, is linked to a specific discretization prescription [24]. For symbolic
manipulations in the continuous limit, it is often convenient to use the Wigner–Weyl symbol
of the quantum Hamiltonian as the c-number Hamiltonian. Note, however, that sn is the
covariant symbol of the spin operator ŝ, and not the Wigner–Weyl symbol. The consequences
of the present choice of H(q, p, z∗, z) (21) for the semiclassical theory are discussed in
section 4.4.
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4. Semiclassics with spin–orbit coupling

In this section we consider the semiclassical approach for systems with spin–orbit interaction.
We begin with the limit of weak coupling (section 4.1), calculating the spin part of the path
integral exactly. The trace formula we obtain is a generalization of the results by Bolte and
Keppeler [5] to arbitrary spin. A similar approach leads, under certain restrictions, to the trace
formula in the adiabatic (strong-coupling) limit (section 4.2) that was studied by Littlejohn and
Flynn [25]. In section 4.3 we present a new method that treats both orbital and spin degrees of
freedom semiclassically [27]. With the latter approach one can go beyond the limits of weak
and strong coupling. The relationship between the methods, in connection with the coupling
strength, is analysed in section 4.4.

4.1. Weak-coupling limit: quantum-mechanical treatment of spin

We derive here the semiclassical trace formula for the Hamiltonian (17) in the asymptotic
limit h̄ → 0. In addition to the standard semiclassical requirement R/h̄ � 1, which is
automatically fulfilled, this limit also implies that the spin–orbit interaction energy is small:

|Hs(q, p, z∗, z)| 
 |H0(q, p)| (23)

i.e. the system is in the weak-coupling regime.
It is convenient to separate the terms that explicitly contain h̄ in the Hamilton principal

action function (19). Representing

R[q, p, z∗, z; T ] = R0[q, p; T ] + h̄sR1[q, p, z∗, z; T ] (24)

where the unperturbed part R0 is given by (7) with the Hamiltonian H0(q, p) and

R1[q, p, z∗, z; T ] =
∮ T

0

[
zż∗ − z∗ż
i(1 + |z|2) − n(z∗, z) · C(q, p)

]
dt (25)

we can write the partition function (18) in the form

Z(T ) =
∫ D[q]D[p]

(2πh̄)d
Ms[q, p; T ] exp{iR0[q, p; T ]/h̄} (26)

with

Ms[q, p; T ] =
∫

Dµs [z∗, z] exp{isR1[q, p, z∗, z; T ]}. (27)

Now we can evaluate Z(T ) in the stationary-phase approximation in q and p. Since
sR1 
 R0/h̄ in the case under consideration, Ms[q, p; T ] is a slowly varying functional of
q and p and need not be taken into account when evaluating the stationary-phase condition.
Applying the results of section 2, we obtain the semiclassical approximation to the partition
function as a sum over the unperturbed periodic orbits (determined entirely by H0)

Zsc(T ) =
∑
po

Mpo(T )A(0)
po(T ) exp

{
iR(0)

po

/
h̄ −ν(0)

po π
/

2
}

(28)

where A(0)
po , ν

(0)
po ,R(0)

po ≡ R0
[
q(0)

po , p(0)
po ; T

]
, and the modulation factor Mpo(T ) ≡

Ms

[
q(0)

po , p(0)
po ; T

]
are evaluated for the unperturbed trajectory. Performing the Fourier–Laplace

transform (8) (also in stationary-phase approximation) we arrive at the trace formula in the
weak-coupling limit (WCL)

δgWCL
sc =

∑
po

Mpo(E)A(0)
po(E) cos

{
iS(0)

po

/
h̄ − σ (0)

po π
/

2
}

(29)
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which differs from the unperturbed trace formula forH0 only by the presence of the modulation
factor Mpo(E) ≡ Mpo(T

(0)(E)) with T (0)(E) = dS(0)
po

/
dE.

The modulation factor is determined in appendix A by a direct evaluation of the path
integral (27). For a Hamiltonian linear in spin, the problem is effectively reduced to
the calculation of the spin partition function in the time-dependent external magnetic field
C(q(t), p(t)) ≡ (2 Re f (t),−2 Im f (t), 2A(t)), determined by the path (q(t), p(t)). Then for
a periodic orbit one finds

Mpo(E) = sin[(s + 1/2)η(E)]

sin[η(E)/2]
(30)

with

η(E) =
∫ T (0)

0
dt{2A(0)(t) − [(f (0)(t))∗z + f (0)(t)z∗]}. (31)

z∗(t) and z(t) are to be found from the first-order differential equation

ż = −i[2A(0)(t)z + f (0)(t) − (f (0)(t))∗z2] z(0) = z(T ) (32)

which is simply the precession equation ṅ = C(0) × n, n(0) = n(T ) for the classical spin
vector n [equation (22)]. This equation is angle-preserving, i.e. it rotates the Bloch sphere
without deforming it. Thus, the orientations of the Bloch sphere at t = 0 and t = T are
related by a rotation about some axis. The angle of rotation is η(E) (appendix A). The choice
of initial condition n(0) along this axis corresponds to a periodic solution (cf [36]). Thus, (32)
has two periodic solutions, whose η(E) have opposite signs. Nevertheless, Mpo(E) is well
defined. Note that η(E) is equal to the partR1

[
q(0)

po , p(0)
po , z

∗, z; T (0)
]

of the Hamilton principal
action function calculated along the periodic z∗(t) and z(t). Although we are able to give a
classical interpretation to the ingredients of Mpo(E), no stationary-phase approximation was
used in its derivation.

In the absence of spin–orbit interaction or external magnetic fied one finds Mpo(E) =
2s + 1, i.e. the unperturbed trace formula is multiplied by the spin degeneracy factor.

For s = 1/2 the modulation factor Mpo(E) was derived in [5] by a different method,
which, as ours, treats the spin degrees of freedom on the quantum-mechanical level.

Clearly, when the weak-coupling condition (23) breaks down, the trace formula (29)
is no longer valid. Indeed, in this case R1 is large, and Ms[q, p; T ] will influence the
stationary-phase condition for the integral (26).

Note that the representation of terms in the WCL trace formula as a product of the
unperturbed part and the modulation factor [equation (29)] remains valid even when the
Hamiltonian is nonlinear in spin. However, the simple expression for the modulation factor
equation (30) is specific to the Hamiltonian linear in spin.

4.2. Adiabatic limit: strong coupling

With an exact integration over the spin degrees of freedom in the path integral we can also
derive the trace formula in the adiabatic limit. This limit is defined by the requirement

|C(q, p)| � T −1
orb (33)

where Torb is the period of the orbital motion. Since |C| is the frequency of precession of
the classical spin about the instantaneous magnetic field C, equation (33) means that the spin
motion is much faster than the orbital motion. The results of this section will be most useful
in the strong-coupling limit (SCL) |Hs | ∼ |H0| or |C| ∼ |H0|/h̄, where (33) is automatically
satisfied. Formally speaking, the SCL can be stated as the double-limit h̄ → 0, |C| → ∞
with h̄|C| = const (cf [5]).



5188 M Pletyukhov and O Zaitsev

We start with the representation (26) for the partition function and write the prefactor in
the form (appendix A)

Ms[q, p; T ] = sin{(s + 1/2)η[q, p; T ]}
sin{η[q, p; T ]/2} =

s∑
ms=−s

exp{imsη[q, p; T ]}. (34)

Then Z(T ) becomes a sum over polarizations

Z(T ) =
s∑

ms=−s

∫ D[q]D[p]

(2πh̄)d
exp{iR0[q, p; T ]/h̄ + imsη[q, p; T ]} (35)

where the path integrals will be calculated by the stationary phase. The functional η[q, p; T ]
is given by [cf (31)]

η[q, p; T ] =
∫ T

0
dt{2A − [f ∗z + f z∗]} (36)

with f = |C| sin θC e−iφC and A = (|C|/2) cos θC in terms of the polar angles θC, φC of the
vector C. The trajectory z(t) is one of the two periodic solutions of the equation

ṅ = C × n |n| = 1 (37)

which can be solved approximately in the adiabatic limit. We look for the solution in the form
n = n(0) + n(1), where n(0) ‖ C and n(1) ⊥ C. Assuming n(1) ∼ n(0)/(|C|Torb) 
 n(0), we
obtain

n(0) = ± C
|C| n(1) = ∓n(0) × ṅ(0)

|C| . (38)

Then (36) gives us the phase

msη[q, p; T ] = −ms

∫ T

0
|C| dt + ϕ

(ms)

B + O(|C|Torb)
−1. (39)

Here the second term is the Berry phase

ϕ
(ms)
B = ms

∫ T

0
(1 + cos θC)φ̇C dt . (40)

When the path integrals (35) for Z(T ) are evaluated by stationary phase, the Berry phase
ϕ

(ms)

B ∼ 1 does not play a role in the determination of the stationary-phase point. In the SCL,
i.e. when |C| ∼ |H0|/h̄, the first term of (39) must be varied together with R0/h̄ in order to
derive the stationary-phase condition. Then after the standard procedure (section 2) we obtain
the trace formula

δgSCL
sc =

s∑
ms=−s

δg(ms)
sc (41)

where each polarized density of states δg(ms)
sc is given by (3) with the classical dynamics

controlled by the effective Hamiltonian

H(ms)

eff (q, p) = H0(q, p) + msh̄|C(q, p)| (42)

and the Berry phase added. An independent semiclassical derivation of this result is given in
appendix B.

Actually, this result is valid only if C(q, p) depends on either qj or pj , but not both, for
each j = 1, . . . , d . In the latter case such symbolic manipulations with path integrals do not
seem to be valid, and, as a result, the ‘no-name’ term found by Littlejohn and Flynn [25] is
missing. The problem of recovering this term in the path-integral approach has been known
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for some time and was already mentioned in [25]. Making some heuristic assumptions, Fukui
[14] reproduced the no-name term for the Jaynes–Cummings model in a framework similar
to ours. It is not clear to us at this stage, whether his approach can be generalized to a wider
class of Hamiltonians. We suppose that this term emerges due to the operator ordering, and
hope to recover it making a careful analysis of the continuous limit of the path integral.

It may happen that the adiabatic condition (33) is fulfilled in the WCL. The trace formula
is well defined if the limit h̄|C|/H0 → 0 is taken before the limit |C|Torb → ∞. Hence,
msη[q, p; T ] does not contribute to the determination of the stationary point, and the orbital
motion is governed entirely by H0. The results of the previous section will be recovered with
η(E) given by (39), i.e. the fast spin precession can be removed from η(E) in the adiabatic
limit.

We note that expression (39) becomes invalid if the adiabatic condition (33) breaks down
anywhere along the periodic orbit. In particular, this occurs in the mode-conversion points
defined by C(q, p) = 0.

4.3. Semiclassics in the extended phase space

In the present approach, proposed recently in [27], both the orbital and spin degrees of freedom
are treated semiclassically. For the formal derivation we assume the standard semiclassical
requirements of large action R,S � h̄ and large spin angular momentum, i.e.

S ≡ h̄s � h̄. (43)

Later the second condition will be dropped. The spin–orbit coupling is allowed to be arbitrary
now. Moreover, we show in section 4.4 that the WCL trace formula (29) and the SCL trace
formula (41) can be reproduced within the approach of [27].

In section 2 we presented the derivation of the spinless trace formula starting from the
quantum partition function. Here we apply the same scheme to the spin-dependent Z(T ) of
(18) with the c-number Hamiltonian (21) responsible for the classical dynamics. At the end
we should obtain the trace formula in its standard form (3). However, all its elements (periodic
orbits, their actions, periods and stabilities) are to be found from the dynamics in the extended
phase space q, p, z∗, z. In what follows we show how these ingredients can be determined.

The first step is to obtain the classical equations of motion from the variational principle
δR[q, p, z∗, z] = 0, where, in particular, z∗ and z are varied independently. These generalized
Hamilton equations are

q̇i = ∂H
∂pi

ṗi = −∂H
∂qi

(44)

ż∗ = i
(1 + |z|2)2

2S

∂H
∂z

ż = −i
(1 + |z|2)2

2S

∂H
∂z∗ . (45)

We emphasize that these equations describe the coupled dynamics of spin and orbital degrees
of freedom and collectively determine the periodic orbits in the extended phase space.

The second pair of equations is not redundant, as may appear. Actually, they prove
the expected property that z∗ is indeed the complex conjugate of z along the classical paths.
After we have established this, we can rewrite equations (45) in terms of the real variables
v = Im z∗ = −Im z and u = Re z∗ = Re z as

v̇ = (1 + |z|2)2

4S

∂H
∂u

u̇ = − (1 + |z|2)2

4S

∂H
∂v

. (46)

These two equations are equivalent to

ṅ = C × n (47)
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with n given by (22). (As was already mentioned, the WCL equation (32) is of the same form
as (45), if H is calculated along the unperturbed orbits.) It is worth noting that the equations
of motion (44) and (46) can be formulated in terms of the generalized Poisson bracket

Ḟ = {F,H}
= ∂F

∂q
∂H
∂p

− ∂F
∂p

∂H
∂q

+
(1 + u2 + v2)2

4S

(
∂F
∂v

∂H
∂u

− ∂F
∂u

∂H
∂v

)
(48)

for any function F of the extended-phase-space coordinates.
According to (19), the action along a periodic orbit is

Spo(E) =
∮ T (E)

0

[
1

2
(p · q̇ − q · ṗ) + 2S

uv̇ − vu̇

1 + u2 + v2

]
dt . (49)

The functional of the second variations R(2)
po [η , T ] is still given by (11) with

η = (λ , ν,ρ , ξ) = 1√
h̄

(
δq,

2
√

Sδv

1 + u2 + v2
, δp,

2
√

Sδu

1 + u2 + v2

)
(50)

as well as the 2(d + 1)-dimensional unit symplectic matrix J and the second variation of the
classical Hamiltonian (21)

H(2) = 1

2

∑
i,j

[
λiλj

∂2H
∂qi∂qj

+ 2λiρj

∂2H
∂qi∂pj

+ ρiρj

∂2H
∂pi∂pj

]

+
1

2
(ν2 + ξ2)(−uC1 − vC2 + C3)

+
√

S
(1 + |z|2)

2

(
ν
∂n
∂v

+ ξ
∂n
∂u

)
·
∑

j

(
λj

∂C
∂qj

+ ρj

∂C
∂pj

)
. (51)

The stability matrices and the Maslov indices are determined by the linearized dynamics
η̇ = J ∂H(2)/∂η , as usual [32].

There is, however, one component of the trace formula which is absent for spinless
systems. It is the quantum phase correction that emerges in the semiclassical limit of the
spin-coherent-state path integral [31]. Originally derived by Solari [30], Kochetov [22] and
Vieira and Sacramento [34] for the semiclassical spin propagator, it is given by

ϕSK(T ) = 1

2

∫ T

0
B(t) dt (52)

where

B(t) = 1

2

[
∂

∂z∗

(
1 + |z|2)2

2S

∂H
∂z

+ c.c.

]
(53)

is evaluated along the classical path. Being purely of a kinematic nature, this phase plays the
role of a normalization [22]. For the Hamiltonian (21) we find

B(t) = −uC1 − vC2 + C3 = 2A(t) − [(f (t))∗z + f (t)z∗]. (54)

In the semiclassical limit of the partition function (18) the Solari–Kochetov phase is calculated
along the periodic orbits. Since ϕSK ∼ h̄0, this phase survives the Fourier–Laplace transform
from T to E without affecting the stationary-phase condition and thus enters the trace formula:

δgsc(E) =
∑
po

Apo(E) cos

(
1

h̄
Spo(E) + ϕSK

po (E) − π

2
σpo

)
. (55)
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Note that, as follows from (54), (1/2)η(E) in the WCL result (30) corresponds to the
semiclassical Solari–Kochetov phase.

4.4. Applicability conditions and coupling regimes

We will now show that the semiclassical approach of the previous section is not restricted to
large spin, provided that the Hamiltonian is linear in spin. Thus, we will go beyond the formal
limit (43) and present the arguments justifying this step. We also identify the possible regimes
of weak, strong and intermediate coupling that are unified within the semiclassical treatment
of the extended phase space.

The trace formula (55) results from a stationary-phase evaluation of the path integral (18)
for the partition function. In the discretized version one finds the stationary-phase points in the
space of (2d + 2)N variables q(tl), p(tl), z(tl), l = 1, . . . , N [cf (20)]. Each stationary point
corresponds to a periodic orbit that satisfies the semiclassical equations of motion (44) and
(45). In this section we evaluate the path integral in a different, but equivalent, way. Namely,
we first integrate over the spin variables z(tl) by stationary phase, keeping the orbital part
fixed. The result, which consists of an exponential and a prefactor, depends on q(tl), p(tl).
Then we integrate it over the orbital variables, again by stationary phase. At the end we should
obtain the same sum over the periodic orbits (55), but the two-step calculation allows for a
better control of the approximations made.

The described procedure is very similar to what was done in section 4.1, starting with the
representation (26) for Z(T ). The difference is that now Ms[q, p; T ] of (27) is evaluated by
stationary phase. A similar calculation was done in [36], where the trace formula for a spin
evolving in the external magnetic field C(q(t), p(t)) was derived within the approach of the
previous section (including the Solari–Kochetov phase). The result is valid even if (q(t), p(t))

is a non-classical path, as in the present case. Although the final formula in [36] was written
for spin s = 1/2, it can be straightforwardly generalized to arbitrary spin. Transforming it
from the energy to the time domain, we obtain the stationary-phase result for Ms[q, p; T ]
which coincides with the quantum-mechanically exact expression (34) for any value of spin.

It is clear now that the stationary-phase evaluation of

Z(T ) =
∫ D[q]D[p]

(2πh̄)d
exp{iR0[q, p; T ]/h̄} sin{(s + 1/2)η[q, p; T ]}

sin{η[q, p; T ]/2} (56)

yields the trace formula (55). The stationary-phase condition is fulfilled by the classical
periodic orbits (q(t), p(t)) which satisfy the equations of motion (44). We will also need the
representation for the partition function, in which the orbital part of the path integral (18) is
evaluated by stationary phase, producing

Z(T ) =
∫

Dµs[z∗, z]
∑
po

exp{iR0[qpo, ppo, z
∗, z; T ]/h̄ + isR1[qpo, ppo, z

∗, z; T ]}

×
∫ D[η orb]

(2π)d
exp

{
iR(2)

po [η orb, z
∗, z; T ]

}
(57)

where the periodic orbits in the (q, p) space are determined by the Hamiltonian (21) for a given
non-classical path z(t). The integral of second variations of the orbital variables is defined in
(10)–(12) with the full Hamiltonian (21) (the vector of small variations η orb ought not to be
confused with the functional η[q, p; T ].) Again, applying the stationary-phase approximation
to (57), we should recover the trace formula (55).

With the help of (56) and (57) we can consider the effect of spin–orbit interaction on the
orbital degrees of freedom. Assuming that for the orbital Hamilton’s principal function the



5192 M Pletyukhov and O Zaitsev

semiclassical condition R0/h̄ � 1 is always fulfilled and η,R1 ∼ |C|Torb, we distinguish
the following regimes:

(i) R0/h̄ � sη (WCL). The orbital classical dynamics is determined by H0, i.e. the spin-
dependent factor of (56) does not influence the stationary-phase condition. Thus, the
results of section 4.1 are recovered. If, in addition, |C|Torb � 1 along the periodic orbit,
η is given by (39) and the fast spin precession can be eliminated from the action. The
same conclusions follow from (57), where the periodic orbits will not depend on the spin
path z(t), and we can pull the periodic orbit sum and all the factors, except for exp[isR1],
out of the path integral.

(ii) R0/h̄ ∼ η (SCL). In this case both R0 and R1 determine the stationary-phase condition
in (57). The fluctuation integral does not explicitly contain h̄ and is slowly varying.
Since the adiabatic condition |C|Torb ∼ R0/h̄ � 1 is satisfied, the orbital motion is not
sensitive to small variations of the spin path z(t). This means that the second-variation
integral after the stationary-phase integration over Dµs [z∗, z] will be determined only by
the spin-dependent part of R1, i.e.

Zsc(T ) =
∑
po

exp{iR0/h̄ + i(s + 1/2)η}
∫ D[η orb]

(2π)d
exp{iR(2)[η orb, z

∗, z; T ]}

×
∫ D[η spin]

2π
exp

{
iR(2)

1 [q, p,η spin; T ]
}

(58)

where all the quantities are taken along the periodic orbits, and the integrals of second
variations are calculated separately for the orbital and the spin variations. The Solari–
Kochetov phase η/2 was added to the exponential. The Fourier–Laplace transform (8)
of Zsc(T ), done by stationary phase, yields the trace formula. The stationary-phase
condition E = −∂R/∂T seems to be spoiled by the Solari–Kochetov phase. However,
as shown in appendix B, the periodic orbits form continuous families on the Bloch sphere
in the adiabatic limit. Therefore, η, being the angle of rotation of the Bloch sphere (cf
section 4.1 and [36]), is a multiple of 2π . Thus, η remains constant as T is varied, i.e.
E = −∂R/∂T = −∂R0/∂T (this does not mean, of course, that the function E(T ) is
independent of spin, since R0 is evaluated along the periodic orbit in the extended phase
space). After the trace formula is resummed to eliminate the spin part of action and
stability denominator (cf appendix B), the result (41) will be reproduced. Clearly, the
orbital integral of second variations in (58) will be transformed to the stability determinants
for the periodic orbits of H(ms)

eff (42).
(iii) R0/h̄ ∼ η, but in some regions of phase space the magnetic field |C(q, p)| becomes

small, so that the adiabatic condition fails (intermediate coupling). This is the regime
when the semiclassical theory in the extended phase space is especially useful, since
both the WCL and SCL formulations are not applicable. In particular, the general
trace formula (55) should remain valid if the orbit contains mode-conversion points
where C(q, p) = 0. In the weak-coupling regions the influence of spin degrees of
freedom on the stationary-phase point is negligible, of course.

(iv) S ∼ R0 � h̄ (large-spin limit). This is the standard case when the spin-phase-space
semiclassics generally works, even if the Hamiltonian is nonlinear in spin. The orbital
motion is affected by spin, and the trace formula (55) is appropriate here.

We conclude that for a Hamiltonian linear in spin, the general semiclassical requirement
of large spin S � h̄, under which the trace formula (55) was derived, now becomes
unnecessary. In fact, in many physical problems the spin is small (S ∼ h̄) and the Hamiltonian
is linear in spin. The trace formula (55) can be used in all four regimes. It can be simplified in
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the limits of weak and strong coupling, but, since these are asymptotic limits, their boundaries
may not be strictly defined in specific numerical examples. The trace formula in its general
form ensures that all the effects of spin–orbit coupling on the density of states are taken into
account in the semiclassical approximation1.

It can be inferred from the discussion in appendix B that the number of periodic orbits in
the extended phase space increases with the increase of spin–orbit interaction strength. As a
consequence, the number of bifurcations may rise, making our theory, in a sense, technically
more challenging. However, we believe that the method should work reasonably well when
the number of relevant orbits is not too high, e.g., in the intermediate coupling regime (see the
example in section 5.2). An extension of our theory that includes the treatment of bifurcations
by uniform approximations is desirable.

As was already mentioned at the end of section 3, there is a freedom in choosing the
c-number Hamiltonian for the path-integral representation of the partition function (18). It
is important, therefore, to understand how the semiclassical theory of the previous section
depends on a particular choice of this Hamiltonian. In our path-integral construction we
assigned to the spin operator h̄ŝ the classical symbol h̄sn. The difference between this
symbol and other possible symbols is O(h̄) (not O(h̄s)!). Thus, different symbols of the spin
Hamiltonian Ĥ s disagree byO(h̄|C|), which is of the order ofHs itself, unless the spin is large.
This means that outside of the large-spin limit the results of section 4.3 are valid, generally
speaking, only with the specific choice of the c-number Hamiltonian (21). Note that even in
the large-spin limit, a change of the symbol will show up in the phase of the trace formula,
since the action will be modified by O(h̄|C|T ).

5. Applications of semiclassical methods

We shall now apply the semiclassical methods of section 4 to two specific systems. In
section 5.1 we study the free two-dimensional electron gas with the Rashba Hamiltonian and
the Jaynes–Cummings model, that allow analytical treatment on both quantum-mechanical
and semiclassical levels. Then in section 5.2 we consider a numerical example of a quantum
dot with harmonic confinement and Rashba interaction. This system is a good test case for
our new semiclassical approach in the extended phase space, since the SCL method suffers
from the mode-conversion problem, while the WCL trace formula completely neglects the
spin–orbit interaction.

5.1. Rashba and Jaynes–Cummings models

The free two-dimensional electron gas with a Rashba spin–orbit interaction [8] in a
homogeneous magnetic field B = B0 e3 is characterized by the Hamiltonian

Ĥ = π̂2
1

2m∗ +
π̂2

2

2m∗ +
2αR

h̄
(π̂1ŝ2 − π̂2ŝ1) + g∗µBB0ŝ3. (59)

Using the symmetric gauge for the vector potential, the components of noncanonical
momentum are given by π̂1 = p̂1 − (eB0/2c) q̂2 and π̂2 = p̂2 + (eB0/2c) q̂1. αR is the
Rashba constant [8, 11], m∗ is the effective mass of an electron, e is the absolute value of its
charge, g∗ is the effective gyromagnetic ratio, µB = eh̄/2mc is the Bohr magneton.

1 At this stage we have to restrict ourselves to the case of C(q, p) depending on either qj or pj , but not both, for
each j = 1, . . . , d, due to the problem of the ‘no-name’ term (see section 4.2).
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Due to the commutation relation [π̂2, π̂1] = ih̄eB0/c we can introduce canonically
conjugated operators Q̂ = −π̂2

√
c/eB0 and P̂ = −π̂1

√
c/eB0 satisfying [Q̂, P̂ ] = ih̄.

Then, the Hamiltonian (59) can be written as

Ĥ = ωc

2
(Q̂2 + P̂ 2) + 2h̄κωc(Q̂ŝ1 − P̂ ŝ2) + h̄γ ωcŝ3 (60)

where we have introduced the new parameters2 κ = αR

√
eB0/h̄

2√c, γ = g∗m∗/2m, and the
cyclotron frequency ωc = eB0/m∗c.

The Jaynes–Cummings model [19], that describes the simplest possible interaction
between a bosonic mode and a two-level system, has a similar Hamiltonian, although all
its ingredients have a different physical meaning. It can be recovered after subtracting h̄ωc/2
from the Hamiltonian (60) and taking s = 1/2.

For s = 1/2 the quantum-mechanical energy spectrum of (60) is known analytically [8]:

E0 = h̄ωc(1 − γ )/2
(61)

E±
k = h̄ωc

(
k ±

√
(1 − γ )2/4 + 2kh̄κ2

)
k = 1, 2, 3, . . . .

Using Poisson summation, it can be identically transformed to an exact quantum-mechanical
trace formula [2]. The smooth part is g̃(E) = 2/h̄ωc and the oscillating part becomes

δg(E) = 2

h̄ωc

∑
±

(
1 ± h̄κ2√

(1 − γ )2/4 + 2Eκ2/ωc + h̄2κ4

)

×
∞∑

k=1

cos

[
2πk

(
E

h̄ωc

+ h̄κ2 ±
√

(1 − γ )2/4 + 2Eκ2/ωc + h̄2κ4

)]
. (62)

One can also find analytically the oscillating part of the level density in the WCL and SCL [2].
To illustrate the semiclassical methods discussed in this paper, we will generalize δgWCL

sc

to arbitrary s, first, using the WCL approach of section 4.1, and, second, working in the
extended phase space (section 4.3) in the WCL.

5.1.1. WCL method. According to (21) the phase-space symbol of the Hamiltonian (60) is

H = ωc

2
(Q2 + P 2) + 2h̄sκωc(Qn1 − Pn2) + h̄sγωcn3. (63)

It is suitable to introduce the complex variables α = (Q + iP)/
√

2 and n = n1 + in2 and to
rewrite the Hamiltonian (63) in the form

H = ωcα
∗α +

√
2h̄sκωc(αn + α∗n∗) + h̄sγωcn3. (64)

In the WCL we can identify two small dimensionless parameters: h̄ωc/E (validity of
semiclassics) and h̄κ2 (weak coupling). We impose that h̄ωc/E ∼ h̄κ2 
 1, meaning that in
the double limit E → ∞, κ → 0 the combination Eκ2/ωc is kept constant. It corresponds to
the formal limit h̄ → 0.

We need to solve equation (32) with A(0) = γωc/2 and f (0) = κ
√

2Eωc exp(−iωct). Its
periodic solutions are

z = −|z| exp(−iωct) (65)

where |z| is constant and is given by the quadratic equation

|z|2 − 1 − γ

κ
√

2Eωc

|z| − 1 = 0. (66)

2 This definition of κ is applicable only within section 5.1.
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Of the two roots

|z|± = ωc(1 − γ )

2κ
√

2Eωc

±
√

ωc(1 − γ )2

8Eκ2
+ 1 (67)

we will choose |z|+ (|z|− yields the same result) and calculate the integrand of (31)

2A(0) − (f (0)∗z + f (0)z∗) = ωc(1 + 2�) (68)

where

� =
√

(1 − γ )2

4
+

2Eκ2

ωc

. (69)

The unperturbed trace formula for the system without spin degrees of freedom,
corresponding to Ĥ 0 = π̂ 2/2m∗, is that of a one-dimensional harmonic oscillator with the
cyclotron frequency ωc and reads [6]

δg(0)(E) = 2

h̄ωc

∞∑
r=1

(−1)r cos

(
r

2πE

h̄ωc

)
. (70)

Integrating (68) over the r repetitions of the primitive period of the unperturbed system
T (0)

po = 2π/ωc, we find

ηr(E) = 2πr(1 + 2�). (71)

Then, according to (29), the WCL trace formula is

δgWCL
sc (E) = 2

h̄ωc

∞∑
r=1

(−1)r(2s+1) sin[(2s + 1)2πr�]

sin[2πr�]
cos

(
2πE

h̄ωc

r

)
. (72)

For spin s = 1/2 it yields

δgWCL
sc (E) = 2

h̄ωc

∞∑
r=1

2 cos[2πr�] cos

(
2πE

h̄ωc

r

)

= 2

h̄ωc

∑
±

∞∑
r=1

cos

[
2πr

(
E

h̄ωc

± �

)]
(73)

in agreement with the result of [2].

5.1.2. WCL in the extended phase space. Now we will carry out the procedure outlined in
section 4.3 for the Rashba Hamiltonian. The implementation of the WCL in the extended
phase space for a general Hamiltonian of the form (17) can be found in [36].

The classical dynamics of the system is described by the equations of motion (44) and
(47), which now have the form

α̇ = −iωc(α +
√

2h̄sκn∗)
ṅ = iωc(γ n − 2

√
2κn3α

∗) (74)

ṅ3 = −i
√

2κωc(nα − n∗α∗).

Along with the energy conservation H = E there is another conserved quantity |α|2 + h̄sn3 =
const. It means that the system (63) is classically integrable. Its general analytic solution
has been given in [1]. Here, however, we are interested in the periodic solutions, which infer
the knowledge of certain initial conditions. Let us make an ansatz for the particular isolated
periodic orbits with n3 = const:

α = |α| e−i�t n = −ξ |n| ei�t (ξ = ±1) (75)
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with constant parameters �, |α| and |n|. Plugging (75) into (74) we obtain the relations
between them:

� = ωc(1 −
√

2ξh̄sκ |n|/|α|)
� = ωc(γ + 2

√
2ξκn3|α|/|n|)

(76)
E = ωc(|α|2 + h̄sγ n3 − 2

√
2ξh̄sκ |α||n|).

For the rth repetition of the orbits (75) we can calculate the action

Sr
po(E) =

∮ T (E)

0
dt

(
αα̇∗ − α∗α̇

2i
+ h̄s

zż∗ − z∗ż
i(1 + |z|2)

)
= 2πr(|α|2 + h̄sn3) + 2πrh̄s

= 2πr

(
E

ωc

+ h̄s(1 − γ )n3 + 2
√

2ξh̄sκ |α||n|
)

+ 2πrh̄s (77)

and the stability angle

�r
po = r

4πκωc

�

√
h̄2s2|n|2

2|α|2 +
2|α|2
|n|2 − 2h̄sn3 + 2πr. (78)

It seems to be difficult to solve the algebraic equations (76) with respect to �, |α| and
|n|. Moreover, from the numerical search of the periodic orbits in this system we know that
for rather large κ there might appear other periodic orbits with more complicated shapes.
Up to now we have not used the WCL conditions in our calculations. In particular, the
expressions for the action and stability angle are valid for any values of parameters. We gain
considerable simplifications in the WCL that corresponds to the formal expansion in a series
of h̄: |α| = |α|(0) + h̄|α|(1) + · · · , etc. Then we can find that, for instance,

|α|(0) =
√

E/ωc �(0) = ωc (79)

n
(0)

3 = ξ(1 − γ )/2� |n|(0) = κ
√

2E/�
√

ωc. (80)

We conclude that, in the leading order, the orbital motion is unaffected by spin and for the
two periodic orbits we have nξ=1(t) = −nξ=−1(t), i.e. the spins are opposite at any time.
Moreover, we know from the general considerations [36] that in the WCL only two periodic
orbits are possible for the Hamiltonian (64), and they are given by (75). For these orbits we
can calculate the action Sr

ξ = (2πE/ωc) + ξh̄sηr (E) [equation (71)] and the stability angle
�r

ξ = �(0)
r = ηr(E) using (77) and (78), respectively. As was discussed in section 4.3, the

Solari–Kochetov extra phase ϕSK
ξ , which in the WCL is equal to (1/2)ξηr(E), should be added

to the trace formula. Thus, the total phase that enters the trace formula is (up to the Maslov
indices)

�r
ξ = Sr

ξ

h̄
+ ϕSK

ξ = 2πrE

h̄ωc

+ (2s + 1)2πrξ(2� + 1) + O(h̄). (81)

Then we find the oscillating part of the level density

δgWCL
sc (E) = 1

h̄π

∑
ξ=±1

∞∑
r=1

T (0)

2
∣∣sin

(
�

(0)
r

/
2
)∣∣ cos

(
�r

ξ − σ r
ξ π/2

)
(82)

where T (0) = 2π/ωc is the unperturbed primitive period. Adding the appropriate Maslov
indices [36] σ r

ξ = 1 + 2[ξηr(E)/2π], where [x] is the largest integer �x, and summing up
ξ = ±1, we can recover formula (72).
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5.2. Quantum dot with the Rashba interaction

We consider a two-dimensional electron gas in a semiconductor heterostructure, laterally
confined to a quantum dot by a harmonic potential. We assume that its Hamiltonian

Ĥ = p̂2
1

2m∗ +
p̂2

2

2m∗ +
m∗�2

1q̂
2
1

2
+

m∗�2
2q̂

2
2

2
+ 2κh̄(ŝ2p̂1 − ŝ1p̂2) (83)

includes a spin–orbit interaction of Rashba type [8], where3 κ = αR/h̄2. The c-number
Hamiltonian (21) in this case is

H = p2
1

2m∗ +
p2

2

2m∗ +
m∗�2

1q
2
1

2
+

m∗�2
2q

2
2

2
+ 2Sκ(n2p1 − n1p2). (84)

We will treat this system within our semiclassical approach in the extended phase space.
As discussed in [2], the WCL trace formula fails to account for the spin–orbit interaction.
Indeed, without spin–orbit coupling the only periodic orbits of the system are the two self-
retracting librations along the principal axes (we assume �1/�2 to be irrational). The effective
magnetic field C(p) = 2κ e3 × p changes its sign together with p. Hence the spin precession
generated by a libration is self-retracting as well, making the rotation angle for the Bloch
sphere η(E) vanish. Then the modulation factor Mpo(E) = 2s + 1 for both orbits is trivial.
Thus, the WCL trace formula is that of the two-dimensional anisotropic harmonic oscillator
[6] multiplied by the spin degeneracy factor (2s + 1):

δgWCL
sc (E) = 2s + 1

h̄�1

∞∑
k=1

(−1)k

sin
(
kπ �1

�2

) sin

(
k

2πE

h̄�1

)
+

2s + 1

h̄�2

∞∑
k=1

(−1)k

sin
(
kπ �2

�1

) sin

(
k

2πE

h̄�2

)
.

(85)

In the SCL the two pendulating orbits are still present and contain the mode-conversion
points [2], where the interaction term vanishes. Thus the SCL approach in its original form
cannot be applied either. Although one can fix it to some extent by an ad hoc procedure [13],
it would be only natural for us to resort to our extended-phase-space semiclassics, that does
not suffer from the mode-conversion problem and is not restricted to weak or strong spin–orbit
coupling.

The classical dynamics is described by the equations of motion (44) and (46) that now
become

q̇1 = p1

m∗ +
4Sκv

1 + u2 + v2
= p1

m∗ + 2Sκn2 (86)

q̇2 = p2

m∗ − 4Sκu

1 + u2 + v2
= p2

m∗ − 2Sκn1 (87)

v̇ = −κ(1 + u2 + v2)p2 + 2κu(up2 − vp1) (88)

ṗ1 = −m∗�2
1q1 (89)

ṗ2 = −m∗�2
2q2 (90)

u̇ = −κ(1 + u2 + v2)p1 − 2κv(up2 − vp1). (91)

Equations (88) and (91) are equivalent to (47), or,

ṅ1 = 2κp1n3 ṅ2 = 2κp2n3 ṅ3 = −2κ(p1n1 + p2n2). (92)

3 This definition of κ is applicable only within section 5.2.



5198 M Pletyukhov and O Zaitsev

For a numerical study, it is convenient to describe the system in dimensionless quantities.
Let us choose a characteristic frequency �0 and define the dimensionless ω1 = �1/�0 and
ω2 = �2/�0 (note that there is a degree of arbitrariness in the choice of �0). Then we can
construct the following scaled variables:

q̃ = q

√
m∗�0

2S
p̃ = p

1√
2Sm∗�0

κ̃ = κ

√
2Sm∗

�0
(93)

(Ẽ, H̃) = 1

2S�0
(E,H) t̃ = �0t (S̃, R̃) = 1

2S
(S,R). (94)

The Hamiltonian in the scaled coordinates has the form

H̃ = p̃2
1

2
+

p̃2
2

2
+

ω2
1q̃

2
1

2
+

ω2
2q̃

2
2

2
+ 2κ̃

vp̃1 − up̃2

1 + u2 + v2
. (95)

With the scaled action (49)

S̃ =
∮ [

1

2
(p̃ · dq̃ − q̃ · dp̃) +

udv − v du

1 + u2 + v2

]
(96)

the applicability condition of the semiclassical approach now reads S̃ � 1/2s.
The equations of motion for the tilded variables are (time derivatives with respect to t̃)

˙̃q1 = p̃1 + κ̃n2 ˙̃q2 = p̃2 − κ̃n1 (97)

˙̃p1 = −ω2
1q̃1 ˙̃p2 = −ω2

2q̃2 (98)

ṅ1 = 2κ̃p̃1n3 ṅ2 = 2κ̃p̃2n3 ṅ3 = −2κ̃(p̃1n1 + p̃2n2). (99)

Note that the system possesses certain discrete symmetries:

R12 : q̃1 → −q̃1 q̃2 → −q̃2 n3 → −n3 t̃ → −t̃ (100)

R1 : q̃1 → −q̃1 p̃2 → −p̃2 n1 → −n1 t̃ → −t̃ (101)

R2 : q̃2 → −q̃2 p̃1 → −p̃1 n2 → −n2 t̃ → −t̃ . (102)

There are trivial solutions to the equations of motion—the pendulating orbits with ‘frozen
spin’:

• The pair of orbits A±
x pendulating along the q̃1 axis with spin n2 = ±1. The phase-space

coordinates along these orbits are

q̃1(t̃) = ±
(√

2Ẽ + κ̃2/ω1

)
sin(ω1 t̃ )

p̃1(t̃) = ∓κ̃ ±
√

2Ẽ + κ̃2 cos(ω1 t̃ )

v(t̃ ) = ±1 q̃2(t̃) = p̃2(t̃) = u(t̃) = 0.

(103)

The period of the orbits is T̃1 = 2π/ω1. The orbits are invariant under R12 and R1

(R2 produces the symmetry partner, i.e. maps + onto −).
• Similarly, there are a pair of orbits A±

y pendulating in the q̃2 direction with spin n1 = ±1.
They are given by

q̃2(t̃) = ±(√
2Ẽ + κ̃2/ω2

)
sin(ω2 t̃ )

p̃2(t) = ±κ̃ ±
√

2Ẽ + κ̃2 cos(ω2 t̃ )

u(t̃) = ±1 q̃1(t̃) = p̃1(t̃) = v(t̃ ) = 0.

(104)

The period is T̃2 = 2π/ω2. The orbits are invariant under R12 and R2 (R1 produces the
symmetry partner).
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Figure 1. Periodic orbits D+

x1 (solid line) and D+
x2 (dotted line) for κ̃ = 0.67, Ẽ = 60, represented

in different cross-sections of the phase space. Here Q0 = √
2S/m∗�0, P0 = √

2Sm∗�0. Note
the different scales along the axes. In the lower left plot the two orbits are almost indistinguishable.
For the n(t) time dependence see [27].

Other types of periodic orbits can be found from the numerical solution of the equations
of motion (97)–(99). In our numerical example we use ω1 = 1.56 and ω2 = 1.23. For a large
range of parameters with 0 < κ̃ � 0.75 and Ẽ � 8 we find the following non-trivial periodic
orbits:

• Two pairs of orbits D±
x1 and D±

x2 oscillating around A±
x in the configuration space, with

n2 ∼ 0 (figure 1). The spin is rotating about n2 axis. The superscripts (±) denote the
sense of rotation in the subspace (q̃1, q̃2).

• Two pairs of orbits D±
y1 and D±

y2 oscillating around A±
y , with n1 ∼ 0 (figure 2). The spin

is rotating about n1 axis.

For stronger couplings κ̃ � 0.75 or smaller energies Ẽ � 8, new orbits bifurcate from the A

and D orbits. Near the bifurcations the trace formula would have to be modified by uniform
approximations [29]. The periods of the orbits are shown in figure 3.

The spin–orbit strength κ̃ depends on the band structure [11]. For example, for an InGaAs-
InAlAs quantum dot with ∼100 confined electrons one would obtain a value of κ̃ ∼ 0.25. In
order to have the effect of spin on the orbital motion more pronounced, we choose κ̃ = 0.67
for our numerics.

The stability determinant in the trace formula can be calculated according to the general
prescription (section 4.3). The second variation of the Hamiltonian (95) is

H̃(2) = ρ̃2
1

2
+

ρ̃2
2

2
+

ω2
1λ̃

2
1

2
+

ω2
2λ̃

2
2

2
+ κ̃(up̃2 − vp̃1)(ξ

2 + ν2) + κ̃
2
√

2uv

1 + u2 + v2
(ρ̃2ν − ρ̃1ξ)

+ κ̃
√

2

(
2u2

1 + u2 + v2
− 1

)
ρ̃2ξ − κ̃

√
2

(
2v2

1 + u2 + v2
− 1

)
ρ̃1ν (105)
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Figure 2. Same as in figure 1 for orbits D+
y1 (solid line) and D+

y2 (dotted line). In the upper middle
plot the two orbits are almost indistinguishable.
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Figure 3. The periods of the A± and D± orbits as functions of energy for κ̃ = 0.67. The periods
are given in units of 1/�0, the energy unit is 2S�0. For the orbits A±

x and A±
y the periods are

independent of energy and equal to T̃1 ≈ 4.027 68 and T̃2 ≈ 5.108 28, respectively.

where the variables λ and ρ are scaled as q and p, respectively. Numerically solving the
equations of motion for variations

˙̃λ1 = ρ̃1 − κ̃
√

2
2uv

1 + u2 + v2
ξ − κ̃

√
2

(
2v2

1 + u2 + v2
− 1

)
ν (106)

˙̃λ2 = ρ̃2 + κ̃
√

2

(
2u2

1 + u2 + v2
− 1

)
ξ + κ̃

√
2

2uv

1 + u2 + v2
ν (107)

ν̇ = −κ̃
2
√

2uv

1 + u2 + v2
ρ̃1 + κ̃

√
2

(
2u2

1 + u2 + v2
− 1

)
ρ̃2 + 2κ̃(up̃2 − vp̃1)ξ (108)
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Figure 4. Upper and middle panels: the stabilities det(M̃po − I4) of the A± and D± orbits. The
curves come close to the zero level, but do not touch or cross it (avoided bifurcations). Lower panel:
the oscillating part of density of states for κ̃ = 0.67 and S = h̄/2. QM: the quantum-mechanical
direct diagonalization. EPS: the semiclassical calculation in the extended phase space, including
only the first repetitions of the 12 primitive periodic orbits A and D (Gaussian averaging parameter
γ = 0.6). The energy is measured in units of h̄�0.

˙̃ρ1 = −ω2
1λ̃1 (109)

˙̃ρ2 = −ω2
2λ̃2 (110)

ξ̇ = κ̃
√

2

(
2v2

1 + u2 + v2
− 1

)
ρ̃1 − κ̃

2
√

2uv

1 + u2 + v2
ρ̃2 − 2κ̃(up̃2 − vp̃1)ν (111)

one determines the reduced monodromy matrix and then finds the stability determinant
det(M̃po − I4) of the periodic orbits.

After calculating the Maslov indices within Sugita’s approach [32] and the Solari–
Kochetov phase by (52), we can compute the oscillating part of the density of states using the
trace formula (55) (figure 4). Note that while the classical dynamics in the scaled variables
is independent of the value of spin, the density of states will depend on S, since the unscaled
action 2SS̃ enters the phase of the trace formula. We choose the physically meaningful
S = h̄/2 in our example. To ensure the convergence of the periodic orbit sum, the density of
states was convoluted with a normalized Gaussian, exp[−(E/γ )2]/γ

√
π , i.e. it was smoothed

out with the energy window ∼γ . With the averaging parameter γ = 0.6, the first repetitions of
the 12 primitive periodic orbits A and D were sufficient in the trace formula. The semiclassical
result for the density of states is compared with the quantum-mechanical curve, obtained from
a numerical diagonalization of the Hamiltonian (83). We observe a rather good agreement
between the two, especially for the oscillation frequencies. The difference in the amplitudes
can be explained by the vicinity of the bifurcations in the parameter space. Indeed, the
disparity becomes larger near the avoided bifurcations,where the stabilities are extremely small
(figure 4). In principle, these energy regions should be treated by a uniform approximation
[29]. The matter is complicated, however, by the fact that the avoided bifurcations are non-
generic and of codimension larger than 1. The theory for such bifurcations is developed only
for two-dimensional systems. Our system is effectively three-dimensional. In addition to the



5202 M Pletyukhov and O Zaitsev

30 32 34 36 38 40E

-1

0

1

g
(E

) WCL
EPS
QM

Figure 5. A detailed view of the lower panel of figure 4 with the WCL density of states added.

elliptic and (inverse) hyperbolic orbits, it also has the loxodromic orbits. Thus, the extension
of the standard theory of bifurcations is difficult and still needs to be developed.

A more detailed view of δg(E) is shown in figure 5. For comparison, we added there
the density of states calculated by the WCL trace formula with spin S = h̄/2, which, in
this case, is the trace formula of the two-dimensional anisotropic harmonic oscillator without
spin–orbit coupling [6] multiplied by the spin degeneracy factor 2 (see above). Clearly, it
is shifted by phase from the exact density of states. It is worth mentioning that the dashed
(WCL) curve would come very close to the exact quantum-mechanical curve if the former is
shifted by −κ̃2/2 in the scaled energy Ẽ. Note that the action of the trivial periodic orbits
is S̃i = (π/ωi)(2Ẽ + κ̃2). Thus the shift can be related to the perturbative correction to the
action in the extended phase space, which is of the second order in κ̃ . To explain the shift,
it would be interesting to develop the second-order perturbation theory in the parameter κ̃

for the trace formula in the extended phase space, similar to that proposed in [7]. (The first-
order perturbation theory [9] should be equivalent to the WCL trace formula.) Apparently,
the shift of the dashed curve cannot be justified within the standard WCL approach of [5].
With the increase of κ̃ , the non-integrability of the system will show up, and the shape of
the WCL curve (describing the integrable system) will start to deviate from the exact density
of states.

6. Conclusion

We have presented a detailed discussion of a new semiclassical method for systems with
spin–orbit coupling. The key idea of this approach is to introduce an extended phase space of
orbital and spin degrees of freedom where the semiclassical dynamics takes place. The recipe
for the construction of such a phase space, as well as the equations of motion there, can be
obtained from the path-integral formulation of quantum mechanics using the spin coherent
states, with a subsequent stationary-phase evaluation.

We have classified the possible regimes according to the strength of the spin–orbit coupling
and the value of the spin. When the Hamiltonian is linear in the spin, our method works not
only in the standard semiclassical domain of large spin, but also for any finite spin. From the
path-integral formulation we have directly derived the trace formulae in the limiting cases of
weak and (under certain restriction) strong spin–orbit coupling for arbitrary spin. It was argued
that the semiclassical approach in the extended phase space recovers the limiting behaviour.

The general method was illustrated with the specific examples relevant, in particular, to
the mesoscopic physics of heterostructures. Our analytical and numerical results underscore
the importance of the Solari–Kochetov phase correction in the coherent-state path integrals
and the proper evaluation of the Maslov indices in the extended phase space.

The future work in this direction might include the improvement of the semiclassical
evaluation of path integrals in the case of strong spin–orbit coupling (restoration of the
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no-name term); generalizations of the method treating symmetry breaking and bifurcations by
uniform approximations; study of models with the Hamiltonian nonlinear in spin and driven
by an external system, such as the kicked top [16]; and further applications to specific systems
of interest in spintronics, molecular dynamics and nuclear physics.
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Appendix A. Exact quantum-mechanical evaluation of the modulation factor (27)

Appendix A.1. Exact calculation of the trace of a spin propagator

We consider a spin in the external magnetic field C(t) ≡ (2 Re f (t),−2 Im f (t), 2A(t))

described by the Hamiltonian

H(t) = h̄ŝ · C(t) = h̄[2A(t)ŝ3 + f (t)ŝ+ + (f (t))∗ŝ−]. (A.1)

Its exact quantum-mechanical propagator between the spin coherent states |zi〉 and 〈zf | is [22]

Ks(z
∗
f , zi; T ) = [a∗(T ) − b∗(T )zi + b(T )z∗

f + a(T )z∗
f zi]2s

(1 + |zf |2)s(1 + |zi|2)s (A.2)

where the coefficients a(T ), b(T ) are to be found from the equation

d

dt

(
a b

−b∗ a∗

)
= −i

(
A f

f ∗ −A

) (
a b

−b∗ a∗

)
(A.3)

with the initial conditions a(0) = 1, b(0) = 0. One can observe that the determinant of the
matrix

U(t) =
(

a(t) b(t)

−b∗(t) a∗(t)

)
(A.4)

remains constant: |a(t)|2 + |b(t)|2 = 1. Hence, U(t) belongs to the group SU(2) and can be
represented in the form

U(t) = cos
η(t)

2
+ i(m(t) · σ ) sin

η(t)

2
(A.5)

where m2 = 1 and σ is a vector of Pauli matrices. Comparing (A.4) and (A.5) we deduce that

a(t) = cos
η(t)

2
+ im3(t) sin

η(t)

2
b(t) = i[m1(t) − im2(t)] sin

η(t)

2
. (A.6)

Since
1

2
C(t) · σ =

(
A(t) f (t)

f ∗(t) −A(t)

)
(A.7)

we can rewrite (A.3) as
d

dt
U(t) = − i

2
(C(t) · σ )U(t) U(0) = I2. (A.8)
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Note that this equation has the same form as the equation for a spin-1/2 propagator in the
standard |s,ms〉 basis.

The trace of the spin propagator (A.2) is

Zs(T ) = Tr Ks =
∫

dµs(z
′∗, z′)Ks(z

∗
f = z′∗, zi = z′; T ) (A.9)

where dµs(z
′∗, z′) is given by (16) and

Ks(z
′∗, z′; T ) =

[
a∗(T ) − b∗(T )z′ + b(T )z′∗ + a(T )|z′|2

1 + |z′|2
]2s

. (A.10)

After the stereographic projection [cf (22)]

n′
1 + in′

2 ≡ sin θ ′ exp(iφ′) = 2z′∗

1 + |z′|2 n′
3 ≡ cos θ ′ = −1 − |z′|2

1 + |z′|2 (A.11)

and simple transformations we can cast (A.10) into the form

Ks(n′; T ) =
(

cos
η(T )

2
+ in′ · m(T ) sin

η(T )

2

)2s

. (A.12)

Since the measure

dµs(z
′∗, z′) = dµs(n′) = 2s + 1

4π
sin θ ′dθ ′ dφ′ (A.13)

is invariant under rotations, we can choose the axis e3 along m(T ). Then

Zs(T ) =
∫

dµs(n′)Ks(n′; T )

=
∫

dµs(n′)
(

cos
η(T )

2
+ in′

3 sin
η(T )

2

)2s

. (A.14)

Making the following transformations in (A.14):

Zs(T ) = 2s + 1

2

∫ π

0

(
cos

η(T )

2
+ i cos θ ′ sin

η(T )

2

)2s

sin θ ′ dθ ′

= 2s + 1

2

∫ 1

−1

(
cos

η(T )

2
+ ix sin

η(T )

2

)2s

dx

= 1

2i sin[η(T )/2]

(
cos

η(T )

2
+ ix sin

η(T )

2

)2s+1 ∣∣∣∣
x=1

x=−1

we obtain the final result

Zs(T ) = sin[(s + 1/2)η(T )]

sin[η(T )/2]
(A.15)

where η(T ) is found from 2 cos[η(T )/2] = 2 Re[a(T )] ≡ Tr[U(T )].
In order to give the geometric interpretation of η(T ), consider an equation for the spin s

propagator [cf (A.8)]

d

dt
Ds = −i(C · Js)Ds Ds (0) = I2s+1, (A.16)

where Js = (
J s

1 , J s
2 , J s

3

)
are the generators of the (2s + 1)-dimensional irreducible

representation of SU(2). Since Ds (T ) = exp[im(T ) · Jsη(T )], as well as U(T ) =
exp[im(T ) ·σ η(T )/2], η(T ) has the meaning of the rotation angle around the m(T ) axis.

Note that one can alternatively find Zs(T ) as Tr[Ds(T )]. Choosing m(T ) as a quantization
axis and making simple calculations, one would obtain the result coinciding with (A.15).
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Appendix A.2. Calculation of η(T )

For the reader’s convenience we derive (31) within our notation. We will closely follow the
discussion in [5], where this result previously appeared.

Without loss of generality we can choose the basis in which e3 = m(T ). One can
decompose U(t) (A.4) at every t into the matrix product

U(t) =
(

cos(θ/2) e−iφ −sin(θ/2)

sin(θ/2) cos(θ/2) eiφ

)(
eiψ 0

0 e−iψ

)

≡ U1(t)U0(t) (A.17)

where a = cos(θ/2) ei(ψ−φ) and b = −sin(θ/2) e−iψ . Decomposition (A.17) corresponds
to the choice of a certain section in the principal U(1) Hopf bundle over S

2, ψ being a fibre
coordinate. Imposing the time periodicity on U1(t) and recalling that U(0) = I2, we establish
that

ψ(T ) − ψ(0) = η(T )/2. (A.18)

Note that the decomposition (A.17) is not well defined at t = 0, i.e. when θ = 0. Hence, the
initial value ψ(0) is not determined. (Still, η(T ) can be found unambiguously.) Although not
essential for our purposes, the problem can be fixed if we choose a different decomposition
near θ = 0, related to the former by a gauge transformation [5, 35].

We define the projection of the Hopf bundle (θ, φ,ψ) ∈ S
3 −→ n ∈ S

2 by

n ·σ = Uσ3U
† = U1σ3U

†
1 (A.19)

which is equivalent to n1 + in2 = sin θ exp(iφ), n3 = cos θ . One can find equations for n(t)

and ψ(t) from (A.8). Thus, one should calculate

ṅ = 1

2
Tr

[
σ

d

dt
(Uσ3U

†)

]
(A.20)

to recover the equation

ṅ = C × n n(0) = n(T ). (A.21)

After the stereographic projection (22) it becomes

ż = −i[2Az + f − f ∗z2] z(0) = z(T ). (A.22)

To derive an equation for ψ one should calculate

ψ̇ − 1

2
(1 + cos θ)φ̇ = − i

2
Tr

[
σ3U

† d

dt
U

]
(A.23)

taking into account (A.17) and (A.22). In the language of the fibre bundle theory, it corresponds
to the pull-back of the canonical connection form [rhs of (A.23)] onto the section defined by
(A.17). The result of the calculation is

ψ̇ = 1

2i

zż∗ − z∗ż
1 + |z|2 − 1

2
C · n(z∗, z) = [A − (f ∗z + f z∗)/2]. (A.24)

Integrating it we find

η(T ) = 2[ψ(T ) − ψ(0)] =
∫ T

0
dt

[
zż∗ − z∗ż
i(1 + |z|2) − C · n(z∗, z)

]

=
∫ T

0
dt[2A − (f ∗z + f z∗)] (A.25)

where z(t) and z∗(t) are to be found from (A.22).
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Figure 6. Classical spin precessing about the instantaneous magnetic field.

Appendix B. Adiabatic limit in the extended phase space

Here we present an intuitive derivation of the trace formula (41) within the framework of
our semiclassical theory in the extended phase space (section 4.3). In the adiabatic regime
the classical system, described by the Hamiltonian H (21), possesses an adiabatic invariant—
the angle β between the instantaneous magnetic field C and the classical spin vector n. To
demonstrate this, let us consider the quantity α ≡ cos β = n · nC , where nC ≡ C/|C|
(figure 6). Its time derivative averaged over the fast spin motion is

〈α̇〉 = 〈n · ṅC〉 ≈ 0 (B.1)

taking into account that ṅ, ṅC ⊥ nC .
Having an approximate integral of motion α has two consequences. First, the fast spin

precession about C can be separated from the orbital motion in the adiabatic limit. The latter
then is described by the polarized Hamiltonian

Hα(q, p) = H0(q, p) + h̄sα|C(q, p)| (B.2)

with α as a parameter. Second, in a system with one integral of motion in addition to the
energy, the periodic orbits are not isolated, but appear in one-parameter families instead.
Hence, we should use the modified trace formula [10] that involves the summation over the
periodic orbit families ( pof ):

δgsc(E) = −Im
1

iπh̄

∑
pof

[
2π

(2π ih̄)1/2
∣∣ ∂η

∂J

∣∣1/2

]
Tppo exp

(
i
h̄
S + iϕSK − iπ

2 σ
)

∣∣det
(
M̃orb − I2(d−1)

)∣∣1/2 (B.3)

where the factor in the square brackets is absent in the standard Gutzwiller trace formula for
isolated orbits, the stability matrix M̃orb is calculated only for the orbital subspace, the action
S, Solari–Kochetov phase ϕSK and Maslov index σ are evaluated for any representative of a
family. J = h̄sα is the classical-spin projection on the direction nC of the field and

η(α) ≡ η
[
q, p; T (α)

po

]
(B.4)

is the total angle of rotation of the Bloch sphere for a periodic orbit of Hα , where the rhs of
(B.4) is calculated according to (36) (cf section 4.1 and [36]). Obviously, we have η � 2π ,
since the spin vector makes many rotations during the period of the orbital motion.

As a result of the approximate separation of variables, to any classical trajectory of
Hα(q, p) = E corresponds a family of classical trajectories in the extended phase space. This
family will consist of periodic orbits if the respective orbit of Hα is periodic and the Bloch
sphere makes an integer number of rotations during the orbital period. The latter condition
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Figure 7. Elements of the periodic orbit set in the orbital subspace.

follows from the fact that the whole family, not just an isolated orbit, is periodic on the Bloch
sphere. Thus, we have a requirement

η(α) = 2πN(α) (N(α) � 1) (B.5)

with an integer N(α). Clearly, this condition can be satisfied only for selected values of α.
Now we will show that the allowed values of α form discrete sets that become very dense
in the adiabatic limit. Consider a periodic orbit of Hα=−1. Let us assume that as α changes
from −1 to 1 for fixed energy, the orbit can be continuously deformed while maintaining its
periodicity and that η(α) increases with α. If for α = −1 the requirement (B.5) is not fulfilled,
we shift α by a small amount to α = α0, such that η(α0) = 2πN . The greater the frequency
of precession |C|, the smaller the shift. Changing α further to α1 > α0, we achieve that the
Bloch sphere makes one more rotation for the newly deformed orbit, i.e. η(α1) = 2π(N + 1).
We continue this process till we reach the upper bound αL � 1 for which η(αL) = 2π(N +L).
Thus, we have constructed a set {−1 � α0 < α1 < · · · < αL � 1} of the values of α for
which the families of orbits in the extended phase space are periodic. We will call it the
periodic-orbit set ( pos). The better the adiabaticity condition (33) is fulfilled, the larger the
number of elements of the pos L � 1. The periodic orbits within the set are related by an
almost continuous transformation in the (q, p) space (figure 7). If we start with a different
periodic orbit of Hα=−1, we will obtain another pos. The sum over the pof in (B.3) can be
represented as the sum over all sets and the elements within each set, i.e.

∑
pof

(. . .) =
∑
pos

N+L∑
n=N

(. . .) =
∑
pos

∞∑
M=−∞

∫ N+L

N

dn e2π iMn(. . .). (B.6)

In the second equality we applied the Poisson summation formula to the inner sum.
Our conclusions may seem to disagree with the results of section 4.2, where we have found

for the periodic orbits in the extended phase space that α ≈ ±1. There is no contradiction,
however, if we recall that in (37) the magnetic field C was predetermined,so that, in general, the
orbital frequency and the overall frequency of precession were incommensurate. Therefore,
the spin must have been aligned with the field in order to have a periodicity in the extended
phase space. In the present case, on the other hand, there is a feedback from the spin to
the orbital degrees of freedom, and for certain initial conditions the frequencies become
commensurate, thus producing the periodic-orbit sets.

We now turn to the calculation of the action which can be divided into the orbital and
spin parts [cf (49)]. The orbital part S(α)

orb is evaluated in the usual way with the Hamiltonian
Hα(q, p) = E. The spin part is given in terms of the spin orientation n(θ, φ) by

S(α)
spin = h̄s

∮ T
(α)
po

0
(1 + cos θ)φ̇ dt = h̄s[η(α) + α�(α)] (B.7)
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Figure 8. Illustration of the coordinates’ notation. �(t) = ∫ t

0 |C(q, p)| dt .

where �(α) = ∮ T
(α)
po

0 |C(q, p)| dt . There is a direct analogy between the problem of spin
precession and the problem of a spinning top with fixed base point whose axis of rotation is
moved along a closed circuit. Namely, the magnetic field orientation nC(θC, φC) corresponds
to the axis of rotation, its magnitude |C| becomes the angular velocity of rotation and the spin
orientation n(θ, φ) is a direction on the top making angle β with the axis (figure 8). Then the
standard theory of adiabatic motion [17] provides the relation

η(α) − 4π = �(α) − �(α) (B.8)

where �(α) = ∮ T
(α)
po

0 (1 + cos θC)φ̇C dt is the solid angle swept over by the axis of rotation in
the lower hemisphere during the period. Using (B.8) in (B.7) and taking into account (B.5),
we obtain the spin action

S(α)
spin − 4πh̄s = 2πh̄s(α + 1)N(α) + h̄sα�(α) (B.9)

where N(α) was shifted by −2. The second term on the right is the origin of the Berry phase.
The Solari–Kochetov phase ϕSK

α = η(α)/2 = πN(α) is equal to an integer multiple of π .
We expect that together with the Maslov index σ , it will yield, at the end of the calculation,
the usual Maslov index σ (α)

po for the trace formula of the Hamiltonian Hα(q, p) in the orbital
subspace. However, at this point we have not succeeded in establishing this connection.

We can do the summation over the pof in the trace formula (B.3) with the help of (B.6),
where the integral can be computed by stationary phase. For this we express all α-dependent
quantities in terms of N(α) and then substitute it by a continuous variable n. Only S(α)

orb and
2πh̄s(α + 1)N(α) determine the stationary-phase point, the remaining functions are slowly
varying with n. The stationary-phase condition is

0 = 2πM +
1

h̄

∂

∂n

(
S(α)

orb + 2πh̄s[α(n) + 1]n
) = 2πM + 2πs[α(n) + 1] (B.10)

where the result of the classical perturbation theory

∂S(α)

orb

∂α
= −

∮ T
(α)
po

0

∂Hα

∂α
dt = −h̄s�(α) = −2πh̄sN(α) + O(N0) (B.11)

was employed. Thus, the equation for the stationary point α(nst) = −M/s − 1 has a solution
only if the rhs does not exceed 1 by magnitude. This makes the M sum finite, reducing it to
the sum over quantized polarizations:

∞∑
M=−∞

∫ N+L

N

dn e2π iMn+ i
h̄
(S(α)

orb +2πh̄s[α(n)+1]n)(. . .)

≈
s∑

ms=−s

{
e

i
h̄
S(α)

orb

[
(2π ih̄)1/2

∣∣ ∂η

∂J

∣∣1/2

2π

]
(. . .)

}
α=ms/s

. (B.12)
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ms = −M − s is either integer or half-integer, depending on the spin s. It labels the quantized
spin projection on the nC axis. The prefactor due to the stationary-phase integration, that
appears in the square brackets in (B.12), cancels the respective factor in (B.3). The outer sum
over the pos in (B.6), if exchanged with the sum over ms , becomes the sum over the periodic
orbits of polarized Hamiltonians Hα=ms /s(q, p) ≡ H(ms)

eff (q, p) (42). Thus the density of states
is given by the sum of the polarized trace formulae:

δgSCL
sc (E) = 1

πh̄

s∑
ms=−s

∑
po

T (ms)
ppo cos

( S
(ms )
po

h̄
+ ϕ

(ms)

B − π
2 σ (ms)

po

)
∣∣det

(
M̃

(ms)
po − I2(d−1)

)∣∣1/2 (B.13)

with the Berry phase

ϕ
(ms)
B = sα�(α)

∣∣
α=ms/s

= ms

∮ T
(ms )
po

0
(1 + cos θC)φ̇C dt (B.14)

which is equivalent to (40).
Far from being mathematically rigorous, this derivation illustrates how the sum over

quantized polarizations can be obtained from the classical-spin dynamics, where any
polarization is allowed. As in section 4.2, the problem of the missing no-name term [25]
remains here. A careful evaluation of the Maslov indices is also required.
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